Visualizing Multivariate Time Series Data to Detect Specific Medical Conditions
نویسندگان
چکیده
Efficient unsupervised algorithms for the detection of patterns in time series data, often called motifs, have been used in many applications, such as identifying words in different languages, detecting anomalies in ECG readings, and finding similarities between images. We present a process that creates a personalized multivariate time series representation a Multivariate Time Series Amalgam (MTSA) of physiological data and laboratory results that physicians can visually interpret. We then apply a technique that has demonstrated success with the interpretation of univariate data, named Symbolic Aggregate Approximation (SAX), to visualize patterns in the MTSAs that may differentiate between medical conditions such as renal and respiratory failure.
منابع مشابه
Missing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملIdentification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کاملVisualizing frequent patterns in large multivariate time series
The detection of previously unknown, frequently occurring patterns in time series, often called motifs, has been recognized as an important task. However, it is difficult to discover and visualize these motifs as their numbers increase, especially in large multivariate time series. To find frequent motifs, we use several temporal data mining and event encoding techniques to cluster and convert ...
متن کاملA Sparse Representation Method to Detect Saffron Agricultural Lands Using Sentinel-II Satellite Images Time
Nowadays, agricultural management via remote sensing technology has gained a special position among managers and the people who are in charge of this industry. Saffron (Red Gold) is one of specific Iran’s agricultural products with a high economic valance which is used in different fields of food and medical industries. Considering the cultivation conditions of the saffron, there has not a pers...
متن کاملApplication of multivariate techniques in-line with spatial regionalization of AOD over Iran
Application of multivariate techniques in-line with spatial regionalization of AOD over Iran Introduction Models, satellites and terrestrial datasets have been used to detect and characterize aerosol. Nontheless, micoscale classification using remote sensing parameters considers as a deficiency. Thus, regionalizion and modeling aerosol without regard to political boundaries or a specific s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AMIA ... Annual Symposium proceedings. AMIA Symposium
دوره شماره
صفحات -
تاریخ انتشار 2008